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Abstract-A theory is derived for calculation of the inftuence of elastic edge restraints on the vibrations and
buckling of stiffened cylindrical shells. The stiffeners are considered "smeared" and the edge restraints can
be axial, radial, circumferential or rotational. Extensive computations are performed for special kinds of
stringer-stiffened shells, and the theoretical predictions are compared with experimental results. A method of
definition of equivalent elastically restrained boundary conditions by use of vibration tests is discussed.
Application of this technique to tests on 10 shells significantly reduces the scatter in the ratio of experimental
to predicted buckling loads.

NOTATION
A" A, cross section of stringer or ring, respectively
b" b, stringer or ring spacing, respectively

C4 clamped boundary conditions (u = v = w = w.x =0)
c" c, stringer or ring width, respectively
d" d, stringer or ring height, respectively

E Young's modulus
E" E, Young's modulus of stringer or ring, respectively
e" e, stringer or ring eccentricity, respectively, (distance from shell middle surface to stiffener centroid. positive

when inward)
f frequency

G shear modulus of shell
G

"
G, shear modulus of stringer or ring, respectively
h thickness of shell

I." 10 , moment of inertia with respect to shell middle surface of stringer or ring, respectively
1",1" moment of inertia of stringer or ring cross section about its centroidal axis. respectively
J" J, torsional rigidity of stringer or ring. respectively

kI' R(I ~~')yl' nondimensional elastic axial restraint

k R(I-v')y,' d' . al I . . mf 'I ." Eh non (menSlon e astlc clrcu erentJa restramt

k3' 12(1-;:~R3r3' nondimensional elastic radial restraint

k/ 12(1 ~~:R'Y4' nondimensional elastic rotational restraint

L length of shell
M mass per unit area of stiffened shell
m number of half longitudinal waves
Nx axial edge force per unit length of shell (positive when tension)

n circumferential wave number
p pressure on shell surface (positive in z direction)
P axial compressive load

P" theoretical axial buckling load
P'P calculated axial buckling load for shell with elastic axial or rotational restraint

PUP experimental axial buckling load
R radius to shell middle surface

r index which gets the value I or 2 at the boundaries x, =;~; x, =2~' respectively

SS3 classical simple support (w =Mx =Nx =v 0)
SS4 simple support (w =Mx =u = v =0)

T h'/12R'
t time

U strain energy
u*, v*. w* dimensional displacements

u. v. w non-dimensional displacements (~*; ~: ~*: respectivelY)
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the European Office of Aerospace Research. United States Air Force, under Contract F44620-71-C-0016 and Grant 72·2394.
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Fig. 1. Notation.

x*, y*, z* coordinates (see Fig. \)

x, y, z non-dimensional coordinates (~*; ~\~; respectivelY)

Z Batdorf parameter = V(I-v 2)L2/Rh
x" X2, Xb coordinates of shell edges

y,' elastic axial restraint for unit length
Y2 elastic circumferential restraint for unit length
y,' elastic radial restraint for unit length
y: elastic rotational restraint for unit length

Ed., E2I02

11." 1102 b,D; b
2
D

0,], 02J2
11,h71t2 btD;b

2
D

(J [12(1- V
2)]"4[b,(Rhf'I2/21T] Koiter's measure of total curvature [see 32]

(I-v 2)E,A,. (I-v 2)E2A 2

p." P.2 Eb,h ' Eb
2
h

v Poisson's ratio
p "linearity", ratio between experimental buckling load and the theoretical value predicted by linear theory

p.p "linearity" with respect to elastic restraints
w angular velocity (frequency) (21Tf)

(.) differentiation with respect to time
( ).a differentiation with respect to a

(1- v2)E,A,e, (1- v2)E2A2e2

X" X2 Eb,hR Eb,hR
8( ) variation of the function in brackets.

1. INTRODUCTION

The influence of boundary conditions on the buckling of cylindrical shells has been studied
extensively (see for example [1-10]). Radial, rotational and in-plane boundary conditions have
been considered, mostly for axial compression loading and external pressure. Elastic restraints at
the boundaries, which represent practical boundary conditions more truly, have also been studied
by Almroth[8] and [13], Singer[ll] and [12] and others. The elastic restraints usually represent
the end rings or the connection of the shell to the other parts of the structure, though shells with
elastic end rings have also been investigated by Cohen[l4].

Boundary conditions have also a considerable influence on the vibrations of cylindrical shells,
which has been discussed by many investigators (see for example Forsberg[15] or Nuckolls and
Egle[16] who considered also elastic restraints). The vibrations of cylindrical shells with end
rings were studied by EI-Raheb and Babcock[l7], who found that the end rings noticeably
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inftuence the frequencies and modes of vibrations, and that replacement of end rings by any of
the natural or geometrical boundary conditions would involve considerable errors.

In stiffened shells, too, the influence of boundary conditions on buckling has been the subject
of many investigations, including extensive Technion studies. In these studies (see for example
[18-20]) the boundary conditions were found to have a large influence on the buckling of axially
compressed stiffened cylindrical shells. Contrary to isotropic shells under axial compression, the
in-plane boundary conditions were here found to be very important and the magnitude of their
influence to depend stronglyon shelland stiffenergeometries. The different studies are summarized
in a recent review[191.

Boundary conditions have also considerable influence on the vibrations of stiffened
cylindrical shells, as demonstrated clearly by Sewall and Naumann[22]. They investigated the
influence of different boundary conditions (simple supports-553, c1amped-clamped, c1amped­
free and free-free) on the vibrations of isotropic and stringer-stiffened cylindrical shells (with
internal or external stiffeners).

The vibrations of axially loaded stiffened cylindrical shells were recently investigated
theoretically and experimentally by the authors[23-25]. A method of analysis was developed
which yields the natural frequencies of a stiffened cylindrical shell under axial load and external
pressure for any combination of natural and geometrical boundary conditions. The buckling axial
load or critical pressure can also be found by this method. Good agreement with theoretical
results was obtained in experiments on isotropic and stringer- or ring-stiffened shells.

The present study is an extension of that analysis to include also elastic restraints at the
boundaries and a continuation of the experimental program. The correlation of the vibration tests
with the theory is then employed for more precise definition of the boundary conditions, aiming
at improved predictions of buckling loads.

2. EQUILIBRIUM EQUATIONS AND BOUNDARY CONDITIONS

The approach presented here is based on "smearing" of the stiffeners. This approach has been
discussed in detail by Baruch and Singer[20] and by Singer, Baruch and Harari[21]. It was
applied by Mikulas, McElman and Stein [26, 27], and later by other investigators-as well as the
present authors (see [23-25])-to the vibration of stiffened shells. The accuracy of "smeared"
theory as compared with more exact "discrete" stiffener analyses is also discussed in many of the
studies reviewed in [23]. The more recent ones[28-31] show that the "smeared" approach yields
accurate results, provided the stiffeners are uniformly spaced, fairly close and not too heavy.
Since here the stiffeners obey these criteria, the use of "smeared" theory is justified. The
rotational inertia of the shell cross-section is neglected, as it was shown (see [22,28,29]) that its
effect is indeed negligible in stiffened shells.

The equilibrium equations and natural boundary conditions are derived by variation of the
total potential of the shell, and the derivation was carried out according to both the Donnell
theory and the more exact Flugge theory. The presentation, here, however, limits itself to
Flugge's theory, and only points out in the last equations the terms which would not appear in a
Donnell approach.

Following the development in [23], the first variational principle is applied to the total
potential of the shell to which a new term U.P, the elastic energy of the equivalent springs at the
ends of the shell that represent the elastic restraints at the boundaries, is added. The stiffness of
the end springs per unit length of the shell boundary is YI' in the axial direction, Y{ in the
circumferential direction, Y3' in the radial direction and y': for the rotational restraint, where the
r index is 1 for the boundary XI and 2 for the boundary Xz. Hence one obtains

The variation yields the equations of equilibrium and the boundary conditions which are
presented, in terms of displacement, in detail in TAE Report 208[33] (see eqns (7) and (8) there).
Note that eqns (7) of [33] are identical to eqns (A32) of [23], whereas the boundary conditions,
eqns (8) of [33], differ slightly from eqns (A33) of [23] due to the elastic restraints.

If one assumes a membrane prestress state, and u, v, w represent the mode of vibration, one
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finally obtains the required three equations of equilibrium and boundary conditions presented in
TAE Report 208[33] (eqns (9) and (10» and given for convenience in the Appendix.

The equilibrium equations for a certain set of boundary conditions are solved by the method
known as the "exact solution" which is described in [23] or [25]. By this method one can find the
first, second, third and higher modes of frequencies of vibration of a stiffened cylindrical shell
with any combination of elastic restraints at the boundaries, for a certain number of
circumferential waves.

For the case of axial compression loading, considered here,

- P
Nx = - 27TR' (2)

The influence of increase of P on the vibrations of a stiffened cylindrical shell is studied. At a
certain value of P the shell buckles. Dynamically, buckling is regarded as the state of vanishing
frequency, which means that the shell departs from the state of equilibrium and does not return to
it. Hence to obtain the buckling load, the value of P is sought for which the natural frequency
vanishes. The buckling load is, therefore, determined in this manner, being obviously the lowest
one at any possible value of the circumferential wave number.

A computer program has been developed to compute the results discussed in Section 4. The
program was checked by comparison with results for no-load frequencies obtained in [22] and
results for buckling loads obtained with the BOSOR 3 program. Details of some comparisons are
given in [23].

3. EXPERIMENTAL PROCEDURE

The experimental method is similar to that employed earlier and described in detail in [24] or
[25]. The axially loaded stiffened shells are vibrated by an acoustic driver inside the shell and
resonance frequencies and mode shapes are detected by an outside scanning microphone. (The
test set-up is shown in Fig. 2 of [33] or Fig. 3a of [24]).

As in earlier tests the integrally stiffened cylindrical shells were machined from 7075-T6
aluminum alloy extruded tubes by a process described in [32].

Three kinds of experimental boundary conditions were employed, as shown in Fig. 2. Types A
and B are very similar and represent simple supports (free to rotate). Type C represents clamping.
In this case the shell was placed in a circular groove of the same inner diameter, and the outside
gap was filled with low melting point Cerroband. The type of boundary condition is indicated for
each shell in Table 2.

4. RESULTS AND DISCUSSION

Ten stiffened shells were tested, which may be divided into four groups. Four shells, RO-16,
19,44,46, were "moderately" stiffened (Adb1h = 0.42-0.47) and four shells, RO-15, 20,43,45,
were "lightly" stiffened (A,/b1h = 0.21-0.23), with all 8 specimens having the same length
LlR = 1.25. The remaining two shells were longer (with L/R = 1.50), one RO-18 being
"moderately" stiffened and the other RO- I7 "lightly" stiffened. The dimensions of the shells and
stringers are given in Table 1. All the stringers have rectangular cross sections.

Only the group of "moderately" stiffened shells with (L/R) = 1.25 are discussed here. A
detailed discussion of the other shells, as well as additional results for this group are presented in
TAE Report 208[33]. However, results for the predicted and experimental buckling loads of all
the shells are given in Table 2.

EDGE-S EDGE-(

Fig. 2. Experimental boundary conditions.
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Table 1. Dimensions and properties of shells

Type
of h L d, c,

Shell stiffener [mm] [mm] Rlh LIR Z [mm) [mm) b,/h A,/b,h III/b,h' -e,/h 1/11 8

RO-15 Stringer 0.242 150 496 1.25 739 0.503 0.90 37.1 0.21 0.075 1.54 0.82 0.48
RO-20 Stringer 0.240 150 500 1.25 745 0.504 0.90 37.4 0.21 0.077 1.55 0.84 0.48
RO-43 Stringer 0.234 150 513 1.25 764 0.531 0.90 38.3 0.23 0.098 1.63 1.03 0.49
RO-45 Stringer 0.237 150 507 1.25 754 0.528 0.90 37.9 0.22 0.092 1.61 0.98 0.48
RO-17 Stringer 0.247 180 486 1.50 1042 0.498 0.90 36.3 0.20 0.069 1.51 0.75 0.47
RO-16 Stringer 0.239 150 503 1.25 748 1.054 0.95 37.5 0.47 0.757 2.71 4.77 0.48
RO-19 Stringer 0.242 150 496 1.25 739 1.003 0.90 37.1 0.42 0.595 2.57 3.77 0.48
RO-44 Stringer 0.231 150 520 1.25 774 1.030 0.90 38.8 0.45 0.713 2.73 4.54 0.49
RO-46 Stringer 0.234 150 513 1.25 764 1.030 0.90 38.3 0.44 0.713 2.70 4.36 0.49
RO-18 Stringer 0.243 180 494 1.50 1059 0.980 0.90 36.9 0.41 0.554 2.52 3.58 0.48

R = 120.1 mm; b, = 8.97 mm; E =7500 kg/mm'; v =0.3.

Table 2. Experimentaland theoreticalbucklingloadsand modes ofbuckling(loadsare given inkg)

Exp. Exp. SS3 SS4 C4 Mode
Shell A,/b,h B.C. PUP mode Pc,(SS3) mode Pa (SS4) mode Pa (C4) mode P,p of P,p p p,p

RO-15 0.21 S.S(A) 1800 7/2 1927 10/1 2394 16/3 2452 15/2 12/1 2386 16/3 0.93 0.75
RO-20 0.21 S.S(A) 1930 8/2 1900 10/1 2366 16/3 11/1 2363 16/3 1.02 0.82
RO-43 0.23 S.S(B) 1775 8/2 1840 10/1 2337 16/3 13/1 2260 16/3 0.97 0.79
RO-45 0.22 CL(C) 2015 10/2 2376 16/3 2430 15/2 14/1 2390 16/3 0.83 0.84
RO-17 0.20 S.S(A) 1950 7/2 1968 9/1 2414 15/3 10/1 2408 15/3 0.99 0.81
RO-16 0.47 S.S(A) 3120 8/2 2586 10/1 3841 14/2 4213 12/1 12/1 3745 14/2 1.21 0.83
RO-19 0.42 S.S(A) 3010 8/2 2500 10/1 3646 14/2 10/1 3553 14/2 1.20 0.84
RO-44 0.45 S.S(B) 3005 9/2 2431 11/1 3528 14/2 10/1 3410 14/2 1.24 0.88
RO-46 0.44 CL(C) 2800 9/1 3580 14/2 3940 12/1 11/1 3820 14/2 0.71 0.73
RO-18 0.41 S.S(A) 3050 9/2 2360 9/1 3391 13/1 13/1 3437 13/1 1.29 0.89

tMode for determination of the elastic restraints.

2

o

EXPERIMENT

" RQ - 44
o RO - 46

~=.4m= 1
L _

Fig. 3a. Frequency squared vs axial load in m = 1mode, moderately stiffened shells (L /R = 1.25).
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In Figs. 3a-f the influence of the axial load on the vibrations of shells with different elastic
restraints is presented. As can be seen from Table 1 the dimensions of the shells RO-16, 19,44,46
are very close. Therefore, the initial calculations shown in Figs. 3 are for one shell only, RO-16.
The influence of the elastic restraints is checked in two steps. First the axial restraint kl is varied
between SS3 (kl =0) and SS4 (k l = 00) while rotation is unrestrained (Mx = w = v =0). Then the

2.0

,'xl06

0.5

ORO'.
o RO-19
6 RO- 44
o RO- 4.

553

In =61
lm= 1..;

1600o 2.00 3200
Pkg

Fig.3b. Frequency squared vs axial load in m =1mode, moderately stiffened shells (LIR =1.25).
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Fig.3c. Frequency squared vs axial load in m = 1mode, moderately stiffened shells (LIR = 1.25).
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Fig. 3d. Frequency squared YS axial load in m =I mode, moderately stiffened shells (L IR = 1.25).
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Fig. 3e. Frequency squared YS axial load in m = I mode, moderately stiffened shells (L IR = 1.25).

rotational restraint k.. is varied between SS4 (k.. =0) and C4 (k.. =00) with edge displacements
prevented (u = v = w =0). Note that kl and k.. have been chosen because they are the most
significant elastic restraints for stringer-stiffened shells (radially, w = 0 or k3 -. 00 is assumed).
Figures 3a-3f show the frequency for vibrations with one axial half wave and different
circumferential wave numbers (n), between n = 4 and n = 12. As the circumferential wave
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Fig.3f. Frequency squared vs axial load in m = I mode, moderately stiffened shells (L/R = 1.25).

number increases the slope of the curve (variation of frequency squared with load) changes. In
Figs. 3a-f the experimental results are also presented. Note that for certain circumferential wave
numbers experimental results were obtained only for some of the shells. Of the shells in this
group, RO-16, 19 and 44 were on simple supports whereas R0-46 was clamped. The experimental
simple support allows local axial movement away from the loading plate but not in the opposite
direction. Classical simple supports SS3 imply free local axial movement in both directions. The
experimental boundary conditions are, therefore, stiffer than SS3, though they do not fully
prevent axial movement as required by SS4 B.C's. Since the end plates are not entirely rigid, they
may also be represented by springs, though-on account of their thickness and reinforcing ribs­
fairly stiff springs. This boundary condition is, therefore, assumed to be equivalent to a certain elastic
restraint k. between SS 3 and SS4. Furthermore, consideration of the end plates as circular plates
subjected to an axial line load with periodic variation around the circumference, yields an
equivalent elastic restraint that increases rapidly with n. This may be one of the factors which
contribute to the significant "n" dependence of the elastic restraints. For clamped ends it is also
assumed that the clamping is not perfect and may be represented by an elastic rotational restraint
k4 • As expected, in all cases the clamped shell RO-46 yields higher experimental results and those
of the other shells fall in a narrow scatter band below.

One should remember, especially for simple supports, that at zero load the shell has not yet
settled in its boundary conditions. A certain small load is required to achieve this and one has,
therefore, to examine the results at zero load very carefully.

The experimental results in Figs. 3 indicate that the elastic restraints change with the
circumferential wave number. For example, at a load of 1200 kg. for n = 6 (Fig. 3b) the simple
supported shells yield k. "" 5 and the clamped shell fits the prediction for k. "" 15, whereas for
n = 10 (Fig. 3d) k. = 10-20 for the simply supported shells and the clamped shell fits the
prediction of k4 = 100.

The change in the equivalent elastic restraints with circumferential wave number observed in
the tests may be due to a combination of effects, in addition to the end-plate elasticity discussed,
which can only be a partial factor. Preliminary studies on the influence of initial geometrical
imperfections on the vibrations of isotropic cylindrical shells have shown a very significant
influence both for axisymmetric[34] and asymmetric imperfections[35]. Hence, imperfections
appear to be of similar importance as boundary conditions also for vibrations, and these
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conclusions may be expected to apply generally to stiffened shells as well. The influence of the
initial imperfections was found to vary considerably with n (see [34] and [35]). Hence, the
apparant change of equivalent elastic restraints with n may be a combined result of the actual
change in boundary conditions with n and the change in the influence of initial imperfections with
n.

The vibration tests at the different load levels are now employed for determination of the
appropriate equivalent elastic restraints. These experimentally determined boundary conditions
are then used in a linear buckling analysis. The details of the procedure for the 10 shells are
presented in TAE Report 208[33]. Here only some examples are given.

In Fig. 4 the variation of the predicted frequency squared versus elastic restraint, extending
from SS3 through SS4 to C4, is shown for a typical mode of vibration (n = 12. m = 1) at
P =1200 kg. In this case the small differences in dimensions between the four shells are taken
into account and shown in the figure.

For each shell an experimental curve could be plotted in Figs. 3a-f, whenever enough
experimental points are available, (they are not plotted in the figures for clarity). The elastic
restraint appropriate to the observed frequency at P = 1200 kg. is found in Figs. 3a-f, as shown
by the dotted lines. For example, in Fig. 4 the following values are obtained for n = 11: k1 = 20
for RO-16 and k4 = 380 for R0-46. The equivalent elastic restraints were found only when the
available experimental results appeared consistent.

C4

0.5

_.-_.._-­._.-_0--·'------_.,
.-.,

.,>(" SS t

I _----

- -t - - - - - -SPECIMEN
~"~ - RO·'.
~~ -~ RO ·'9

- "- RO"44
~ ~~ - RO-46

3

L ~ L~__ J

10 20 30 kt 40

Fig. 4. Influence of elastic restraints on the vibrations (with n =II, m = I) of moderately stiffened shells
(LIR =1.25)atP =1200 kg.
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Fig.5. Influence of elastic restraints on the buckling of moderately stiffened shells (L/R = 1.25).



586 AVIV ROSEN and JOSEF SINGER

Figure 5 shows the variation in the predicted buckling loads with elastic restraints. The small
differences in the dimensions of the shells are taken into account and the respective modes of
buckling appear on the curves. Note that throughout the range of restraints n 2: 11. This justifies
the use of elastic restraints from vibrations with high circumferential wave number (like Fig. 4) in
the calculations. Note also in Fig. 5 the changes in the buckling mode for minimum Pcr that occur
as the elastic restraints vary.

With the values of k l obtained in Fig. 4 (and Figs. 6a and 6c of [33]) for the simply supported
shells (k l == 20, 28, 13.5 for RO-16, 19, 44, respectively), one can find in Fig. 5 the predicted
buckling loads for these elastic restraints (in the manner indicated by the dotted lines). The
buckling loads are P.P == 3745,3553 and 3410 for shells RO-16, 19 and 44 respectively. Note also
that all the points are in the region where the curve asymptotically approaches the SS4 value, and
hence are much closer to SS4 boundary conditions than to SS3. For RO-46 the value of k4 == 380
yields a buckling load of 3820 kg. The experimental buckling loads and mode shapes are given in
Table 2. There is a scatter of 115 kg. in the buckling load for the simply supported shells (RO-16,
19 and 44), which is only about 4% of the buckling load. Note that these 3 shells are nominally
identical, but in reality show up to 5% differences in geometric parameters. Surprisingly,
however, the clamped shell of the group (R0-46), which would be expected to be stiffer, buckled
at a lower load than the correspondingly simply supported shells. This will be discussed below.
In buckling experiments the term "linearity" p is often used to indicate the ratio between the

experimental buckling load and the buckling load predicted by theory (see for example [19]). For
simply supported shells the classical value predicted for SS3 boundary conditions is employed
for reference and for clamped shells the value for C4 boundary conditions. This yields p == 1.21,
1.20 and 1.24 for RO-16, 19,44 respectively and p == 0.71 for R0-46 (see Table 2), and there is a
scatter of 53% in p. If, however, the "corrected" theoretical buckling loads P.P are used for
comparison, p.P == 0.83, 0.85, 0.88 for RO-16, 19,44 respectively and p.P == 0.73 for R0-46, and the
scatter reduces to 16%. With the corrected reference values, the "linearity" is always smaller
than one, as would be expected when the boundary conditions are properly accounted for. These
reductions in "linearity" can be mainly attributed to initial geometrical imperfections. Other
imperfections, like eccentric and nonuniform loading, residual stresses and nonlinear material
behavior also affect p (see also [36,37]). The relatively smaller value of "linearity" for the
clamped shell may be due to additional initial geometrical imperfections resulting from the
particular experimental clamped boundary conditions used. Further studies are needed to clarify
this degrading effect of clamping.

5. CONCLUSIONS

It has been shown that boundary conditions have a very significant influence on the vibrations
and buckling of stringer-stiffened cylindrical shells. This influence depends strongly on the
geometry of the shell and the stringers. Equivalent elastic restraints are defined to describe
intermediate positions between the conventional simple support and clamped boundary
conditions SS3, SS4 and C4. These elastic restraints represent more realistic boundary
conditions in practice when the shells are supported on end rings, or other connecting elements.

Experimental results have been obtained for 10 specimens representing 4 different kinds of
shells. In the tests, vibrations of the loaded shells on different experimental boundary conditions
are compared with theoretical predictions and from the comparison the equivalent elastic
restraints, which represent the real boundary conditions, are determined. The buckling loads for
these equivalent elastic restraints are then computed.

The scatter between experimental buckling loads and theoretical predictions may be reduced
when these experimentally defined boundary conditions are employed. The ratio of experimental
buckling load to the predicted one, called "linearity", is introduced. With the usual SS3 boundary
conditions for experimentally simply supported shells and C4 for experimentally clamped ones,
one obtains for the 10 test shells a scatter of 0.71-1.29 in the "linearity" p. With theoretical
predictions corresponding to the elastic restraints obtained from vibrations, one obtains a
reduced scatter of only 0.73-0.89 in p.p. This represents a reduction in scatter from 58 to 17%.

The experimental results show that the equivalent elastic restraints depend on the mode of
vibration and vary significantly with the number of circumferential waves. However, this
apparent change may be a combined effect of actual change in the boundary conditions with n
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and a change in the influence of initial imperfections (geometrical ones, residual stresses,
non-linear material behavior, etc.) with n. Hence one may try to define in future work an "overall
equivalent elastic restraint" that will include both influences.

As a general conclusion from the experiments one can summarize that the experimental
simple support conditions are usually closer to SS4 than to SS3 boundary conditions, and the
clamped ones are somewhere between SS4 and C4 boundary conditions.
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APPENDIX
If one assumes a membrane prestress state, and u, v, W represent the mode of vibration. one obtains the three Fliigge type

equations of equilibrium:

[
Nx(l-v')] [I-V PR(I-v')] I+v

I +iL' + Eh U. xx + -2-(1 + Tl-~ u." +-2- v.XY

[
PR(I-V')] I-v R'M(I-v') ..

- v + Eh w.x - (XI - I)w.xxx - T 2 W. xyy = Eh U

I+v [ PR(I-V')] [I-v Nx(l-V')]
-2- u,XY + 1+ iL'- Eh v. yy + -2-(1 +3T)+ TT/II + Eh v.xx

--- ----
[

pR(I- v')] (3 - v ) R'M(I- v') ..
- 1+ iL' +~+ TT/02 - Eh W. y- (X, + TT/o,)w.yyy + T -2- + T/II W. xxy = Eh v

[
pR(I- V')] I - v [ pR(I- V')]

v + Eh u.x + (X, - I)u,m + T2 U"yy + 1+ iL' + x' + TT/o, - Eh V. y+ (X, + TT/o,)v,yyy

(
3-v ) [ PR(I-V')] Nx(l-v')

- T -2- + T/., v,,., - (I +iL' + 2X')w - 2X, + Eh w,,, + Eh w,xx

- T[(I + 3T/02)W + 2(1 + 2T/02)W,,, + (l + T/OI)W,uxx

(2 ) (I ]
R'M(I- v') ..

+ +T/.,+T/I'w.xXYy+ +T/o,)w."" = Eh W

where the terms underlined are those which do not appear in Donnell's theory.
The boundary conditions are

(AI)

(a)

(b)

(c)

(I + iLdu.x + v(v" - w)- X'W. xx + Tw,xx +(-I)'kt'u = 0

[
I - v N (I - v')] I - v 1- v
-2-+~ U. y+-2-(l +U')v.x + TT/ll v.x + 3T-2-w.xy + TT/.,W,xy +(-I)'k,'v = 0

( 12R') I-v (3-v ),1..+7X' U. XX - 2 u,,, + -2- + 1]., V,x, + (l + T/o,)w,xxx

(d)

+ (2 - v + T/II + l],,)w,XYy
N ·12· (l-v')R'

x Eh' w,x-(-/)'k;w=O

(A2)

where k ,', k,', k; and k; are the nondimensional elastic restraints defined in the Notation.


